Genereret Februar 05 2026 01:39 AM
Gammel data? OPDATER !
Scoren er 38/100
Titel
Convolutional neural network - Wikipedia
Længde : 40
Perfekt, din titel indeholder mellem 10 og 70 bogstaver.
Beskrivelse
Længde : 0
Meget kritisk. Vi kan ikke finde en meta beskrivelse på dit website! Brug denne gratis meta generator til at lave beskrivelser.
Nøgleord
Dårligt! Vi kan ikke finde nogle meta nøgleord på din side! Brug denne gratis online meta generator for at oprette nye nøgleord.
Og Meta Egenskaber
Godt, din side benytter Og egenskaberne
| Egenskab | Indhold |
|---|---|
| title | Convolutional neural network - Wikipedia |
| type | website |
Overskrifter
| H1 | H2 | H3 | H4 | H5 | H6 |
| 1 | 19 | 40 | 14 | 0 | 0 |
Billeder
Vi fandt 50 billeder på denne side.
13 alt tags mangler eller er tomme. Tilføj alternativ tekst til dine billeder for at gøre siden mere brugervenlig, og for at optimere din SEO i forhold til søgemaskinerne.
Text/HTML balance
Balance : 0%
Denne sides text til HTML fordeling er under 15 procent, dette betyder at din side mangler indhold!
Flash
Perfekt, ingen Flash objekter er blevet fundet på siden.
iFrame
Perfekt, der er ikke nogen iFrames på din side!
URL Omskrivning
Dårligt! Dine links er ikke optimerede til SEO.
Underscores i links
Dårligt! Vi har fundet underscores i dine links, du bør benytte bindestreg istedet for underscores for at optimere din SEO.
On-page links
Vi fandt et total af 1142 links inkluderende 226 link(s) til filer
| Anker | Type | Juice |
|---|---|---|
| Jump to content | Intern | Sender Juice |
| Edit links | Ekstern | Sender Juice |
| Machine learning | Intern | Sender Juice |
| data mining | Intern | Sender Juice |
| Supervised learning | Intern | Sender Juice |
| Unsupervised learning | Intern | Sender Juice |
| Semi-supervised learning | Intern | Sender Juice |
| Self-supervised learning | Intern | Sender Juice |
| Reinforcement learning | Intern | Sender Juice |
| Meta-learning | Intern | Sender Juice |
| Online learning | Intern | Sender Juice |
| Batch learning | Intern | Sender Juice |
| Curriculum learning | Intern | Sender Juice |
| Rule-based learning | Intern | Sender Juice |
| Neuro-symbolic AI | Intern | Sender Juice |
| Neuromorphic engineering | Intern | Sender Juice |
| Quantum machine learning | Intern | Sender Juice |
| Classification | Intern | Sender Juice |
| Generative modeling | Intern | Sender Juice |
| Regression | Intern | Sender Juice |
| Clustering | Intern | Sender Juice |
| Dimensionality reduction | Intern | Sender Juice |
| Density estimation | Intern | Sender Juice |
| Anomaly detection | Intern | Sender Juice |
| Data cleaning | Intern | Sender Juice |
| AutoML | Intern | Sender Juice |
| Association rules | Intern | Sender Juice |
| Semantic analysis | Intern | Sender Juice |
| Structured prediction | Intern | Sender Juice |
| Feature engineering | Intern | Sender Juice |
| Feature learning | Intern | Sender Juice |
| Learning to rank | Intern | Sender Juice |
| Grammar induction | Intern | Sender Juice |
| Ontology learning | Intern | Sender Juice |
| Multimodal learning | Intern | Sender Juice |
| Apprenticeship learning | Intern | Sender Juice |
| Decision trees | Intern | Sender Juice |
| Ensembles | Intern | Sender Juice |
| Bagging | Intern | Sender Juice |
| Boosting | Intern | Sender Juice |
| Random forest | Intern | Sender Juice |
| Linear regression | Intern | Sender Juice |
| Naive Bayes | Intern | Sender Juice |
| Artificial neural networks | Intern | Sender Juice |
| Logistic regression | Intern | Sender Juice |
| Perceptron | Intern | Sender Juice |
| Relevance vector machine (RVM) | Intern | Sender Juice |
| Support vector machine (SVM) | Intern | Sender Juice |
| BIRCH | Intern | Sender Juice |
| CURE | Intern | Sender Juice |
| Hierarchical | Intern | Sender Juice |
| Fuzzy | Intern | Sender Juice |
| Expectation–maximization (EM) | Intern | Sender Juice |
| DBSCAN | Intern | Sender Juice |
| OPTICS | Intern | Sender Juice |
| Mean shift | Intern | Sender Juice |
| Factor analysis | Intern | Sender Juice |
| CCA | Intern | Sender Juice |
| ICA | Intern | Sender Juice |
| LDA | Intern | Sender Juice |
| NMF | Intern | Sender Juice |
| PCA | Intern | Sender Juice |
| PGD | Intern | Sender Juice |
| t-SNE | Intern | Sender Juice |
| SDL | Intern | Sender Juice |
| Graphical models | Intern | Sender Juice |
| Bayes net | Intern | Sender Juice |
| Conditional random field | Intern | Sender Juice |
| Hidden Markov | Intern | Sender Juice |
| RANSAC | Intern | Sender Juice |
| Local outlier factor | Intern | Sender Juice |
| Isolation forest | Intern | Sender Juice |
| Neural networks | Intern | Sender Juice |
| Autoencoder | Intern | Sender Juice |
| Deep learning | Intern | Sender Juice |
| Feedforward neural network | Intern | Sender Juice |
| Recurrent neural network | Intern | Sender Juice |
| LSTM | Intern | Sender Juice |
| GRU | Intern | Sender Juice |
| ESN | Intern | Sender Juice |
| reservoir computing | Intern | Sender Juice |
| Boltzmann machine | Intern | Sender Juice |
| Restricted | Intern | Sender Juice |
| GAN | Intern | Sender Juice |
| Diffusion model | Intern | Sender Juice |
| SOM | Intern | Sender Juice |
| U-Net | Intern | Sender Juice |
| LeNet | Intern | Sender Juice |
| AlexNet | Intern | Sender Juice |
| DeepDream | Intern | Sender Juice |
| Neural field | Intern | Sender Juice |
| Neural radiance field | Intern | Sender Juice |
| Physics-informed neural networks | Intern | Sender Juice |
| Transformer | Intern | Sender Juice |
| Vision | Intern | Sender Juice |
| Mamba | Intern | Sender Juice |
| Spiking neural network | Intern | Sender Juice |
| Memtransistor | Intern | Sender Juice |
| Electrochemical RAM | Intern | Sender Juice |
| Q-learning | Intern | Sender Juice |
| Policy gradient | Intern | Sender Juice |
| SARSA | Intern | Sender Juice |
| Temporal difference (TD) | Intern | Sender Juice |
| Multi-agent | Intern | Sender Juice |
| Self-play | Intern | Sender Juice |
| Active learning | Intern | Sender Juice |
| Crowdsourcing | Intern | Sender Juice |
| Human-in-the-loop | Intern | Sender Juice |
| Mechanistic interpretability | Intern | Sender Juice |
| RLHF | Intern | Sender Juice |
| Coefficient of determination | Intern | Sender Juice |
| Confusion matrix | Intern | Sender Juice |
| Learning curve | Intern | Sender Juice |
| ROC curve | Intern | Sender Juice |
| Kernel machines | Intern | Sender Juice |
| Bias–variance tradeoff | Intern | Sender Juice |
| Computational learning theory | Intern | Sender Juice |
| Empirical risk minimization | Intern | Sender Juice |
| Occam learning | Intern | Sender Juice |
| PAC learning | Intern | Sender Juice |
| Statistical learning | Intern | Sender Juice |
| VC theory | Intern | Sender Juice |
| Topological deep learning | Intern | Sender Juice |
| AAAI | Intern | Sender Juice |
| ECML PKDD | Intern | Sender Juice |
| NeurIPS | Intern | Sender Juice |
| ICML | Intern | Sender Juice |
| ICLR | Intern | Sender Juice |
| IJCAI | Intern | Sender Juice |
| ML | Intern | Sender Juice |
| JMLR | Intern | Sender Juice |
| Glossary of artificial intelligence | Intern | Sender Juice |
| List of datasets for machine-learning research | Intern | Sender Juice |
| List of datasets in computer vision and image processing | Intern | Sender Juice |
| Outline of machine learning | Intern | Sender Juice |
| kernel | Intern | Sender Juice |
| predictions | Intern | Sender Juice |
| computer vision | Intern | Sender Juice |
| image processing | Intern | Sender Juice |
| transformer | Intern | Sender Juice |
| Vanishing gradients | Intern | Sender Juice |
| backpropagation | Intern | Sender Juice |
| regularization | Intern | Sender Juice |
| recommender systems | Intern | Sender Juice |
| image classification | Intern | Sender Juice |
| image segmentation | Intern | Sender Juice |
| medical image analysis | Intern | Sender Juice |
| natural language processing | Intern | Sender Juice |
| brain–computer interfaces | Intern | Sender Juice |
| time series | Intern | Sender Juice |
| convolution | Intern | Sender Juice |
| equivariant | Intern | Sender Juice |
| invariant to translation | Intern | Sender Juice |
| layer | Intern | Sender Juice |
| overfitting | Intern | Sender Juice |
| inspired | Intern | Sender Juice |
| biological | Intern | Sender Juice |
| neurons | Intern | Sender Juice |
| visual cortex | Intern | Sender Juice |
| cortical neurons | Intern | Sender Juice |
| visual field | Intern | Sender Juice |
| receptive field | Intern | Sender Juice |
| hidden layers | Intern | Sender Juice |
| dot product | Intern | Sender Juice |
| Frobenius inner product | Intern | Sender Juice |
| ReLU | Intern | Sender Juice |
| pooling layers | Intern | Sender Juice |
| matched filter | Intern | Sender Juice |
| tensor | Intern | Sender Juice |
| channels | Intern | Sender Juice |
| fully connected feedforward neural networks | Intern | Sender Juice |
| features | Intern | Sender Juice |
| memory footprint | Intern | Sender Juice |
| organisms | Intern | Sender Juice |
| Surround suppression | Intern | Sender Juice |
| Hubel | Intern | Sender Juice |
| Wiesel | Intern | Sender Juice |
| simple cells | Intern | Sender Juice |
| complex cells | Intern | Sender Juice |
| Kunihiko Fukushima | Intern | Sender Juice |
| activation function | Intern | Sender Juice |
| neocognitron | Intern | Sender Juice |
| signal-processing concept of a filter | Intern | Sender Juice |
| time delay neural network | Intern | Sender Juice |
| Alex Waibel | Intern | Sender Juice |
| ZIP Code | Intern | Sender Juice |
| Yann LeCun | Intern | Sender Juice |
| syllable | Intern | Sender Juice |
| checks | Intern | Sender Juice |
| NCR | Intern | Sender Juice |
| mammograms (1994) | Intern | Sender Juice |
| electromyography | Intern | Sender Juice |
| graphics processing units | Intern | Sender Juice |
| CPU | Intern | Sender Juice |
| GPGPU | Intern | Sender Juice |
| deep belief networks | Intern | Sender Juice |
| IDSIA | Intern | Sender Juice |
| ImageNet Large Scale Visual Recognition Challenge | Intern | Sender Juice |
| AI boom | Intern | Sender Juice |
| GPUs | Intern | Sender Juice |
| SIMD | Intern | Sender Juice |
| Intel Xeon Phi | Intern | Sender Juice |
| curse of dimensionality | Intern | Sender Juice |
| RGB color | Intern | Sender Juice |
| CIFAR-10 | Intern | Sender Juice |
| locality of reference | Intern | Sender Juice |
| spatially local | Intern | Sender Juice |
| 3 dimensions | Intern | Sender Juice |
| translational invariance | Intern | Sender Juice |
| free parameters | Intern | Sender Juice |
| discrete Laplacian operator | Intern | Sender Juice |
| sparse local connectivity | Intern | Sender Juice |
| hyperparameter | Intern | Sender Juice |
| hyperparameters | Intern | Sender Juice |
| stride | Intern | Sender Juice |
| overlapping | Intern | Sender Juice |
| integer | Intern | Sender Juice |
| symmetric | Intern | Sender Juice |
| down-sampling | Intern | Sender Juice |
| partitions | Intern | Sender Juice |
| ReLU layer | Intern | Sender Juice |
| max operation | Intern | Sender Juice |
| average | Intern | Sender Juice |
| Alston Householder | Intern | Sender Juice |
| nonlinearity | Intern | Sender Juice |
| decision function | Intern | Sender Juice |
| Yoshua Bengio | Intern | Sender Juice |
| hyperbolic tangent | Intern | Sender Juice |
| sigmoid function | Intern | Sender Juice |
| generalization | Intern | Sender Juice |
| affine transformation | Intern | Sender Juice |
| matrix multiplication | Intern | Sender Juice |
| vector addition | Intern | Sender Juice |
| Loss function | Intern | Sender Juice |
| Loss functions for classification | Intern | Sender Juice |
| training | Intern | Sender Juice |
| true | Intern | Sender Juice |
| Softmax | Intern | Sender Juice |
| cross-entropy | Intern | Sender Juice |
| Euclidean | Intern | Sender Juice |
| regressing | Intern | Sender Juice |
| real-valued | Intern | Sender Juice |
| verification | Intern | Sender Juice |
| improve this article | Intern | Sender Juice |
| adding citations to reliable sources | Intern | Sender Juice |
| Learn how and when to remove this message | Intern | Sender Juice |
| Inceptionv3 | Intern | Sender Juice |
| Max pooling | Intern | Sender Juice |
| information loss | Intern | Sender Juice |
| Nyquist–Shannon sampling theorem | Intern | Sender Juice |
| aliasing | Intern | Sender Juice |
| anti-aliasing | Intern | Sender Juice |
| data augmentation | Intern | Sender Juice |
| capsule neural networks | Intern | Sender Juice |
| conformal prediction | Intern | Sender Juice |
| ill-posed problem | Intern | Sender Juice |
| dropout | Intern | Sender Juice |
| expected value | Intern | Sender Juice |
| deep neural networks | Intern | Sender Juice |
| deterministic | Intern | Sender Juice |
| multinomial distribution | Intern | Sender Juice |
| deformations | Intern | Sender Juice |
| elastic deformations | Intern | Sender Juice |
| MNIST data set | Intern | Sender Juice |
| Early stopping | Intern | Sender Juice |
| zero norm | Intern | Sender Juice |
| L1 norm | Intern | Sender Juice |
| L2 norm | Intern | Sender Juice |
| elastic net regularization | Intern | Sender Juice |
| projected gradient descent | Intern | Sender Juice |
| retina | Intern | Sender Juice |
| visual system | Intern | Sender Juice |
| image recognition | Intern | Sender Juice |
| error rate | Intern | Sender Juice |
| facial recognition | Intern | Sender Juice |
| video quality | Intern | Sender Juice |
| root mean square error | Intern | Sender Juice |
| GoogLeNet | Intern | Sender Juice |
| precision | Intern | Sender Juice |
| text-to-video model | Intern | Sender Juice |
| semantic parsing | Intern | Sender Juice |
| recurrent neural networks | Intern | Sender Juice |
| drug discovery | Intern | Sender Juice |
| proteins | Intern | Sender Juice |
| structure-based drug design | Intern | Sender Juice |
| aromaticity | Intern | Sender Juice |
| hydrogen bonding | Intern | Sender Juice |
| biomolecules | Intern | Sender Juice |
| Ebola virus | Intern | Sender Juice |
| multiple sclerosis | Intern | Sender Juice |
| checkers | Intern | Sender Juice |
| Fogel | Intern | Sender Juice |
| Blondie24 | Intern | Sender Juice |
| Chinook | Intern | Sender Juice |
| computer Go | Intern | Sender Juice |
| Storkey | Intern | Sender Juice |
| GNU Go | Intern | Sender Juice |
| Monte Carlo tree search | Intern | Sender Juice |
| 6 dan | Intern | Sender Juice |
| AlphaGo | Intern | Sender Juice |
| clay tablets | Intern | Sender Juice |
| cuneiform writing | Intern | Sender Juice |
| 3D scanners | Intern | Sender Juice |
| GigaMesh Software Framework | Intern | Sender Juice |
| curvature | Intern | Sender Juice |
| transfer learning | Intern | Sender Juice |
| critical systems | Intern | Sender Juice |
| self-driving cars | Intern | Sender Juice |
| visual salience | Intern | Sender Juice |
| spatial attention | Intern | Sender Juice |
| temporal attention | Intern | Sender Juice |
| Atari 2600 | Intern | Sender Juice |
| Convolutional deep belief networks | Intern | Sender Juice |
| Caffe | Intern | Sender Juice |
| C++ | Intern | Sender Juice |
| Python | Intern | Sender Juice |
| MATLAB | Intern | Sender Juice |
| Deeplearning4j | Intern | Sender Juice |
| Java | Intern | Sender Juice |
| Scala | Intern | Sender Juice |
| Spark | Intern | Sender Juice |
| Dlib | Intern | Sender Juice |
| Microsoft Cognitive Toolkit | Intern | Sender Juice |
| C# | Intern | Sender Juice |
| TensorFlow | Intern | Sender Juice |
| Apache 2.0 | Intern | Sender Juice |
| tensor processing unit | Intern | Sender Juice |
| Theano | Intern | Sender Juice |
| NumPy | Intern | Sender Juice |
| CUDA | Intern | Sender Juice |
| on-the-GPU | Intern | Sender Juice |
| Torch | Intern | Sender Juice |
| scientific computing | Intern | Sender Juice |
| C | Intern | Sender Juice |
| Lua | Intern | Sender Juice |
| Attention (machine learning) | Intern | Sender Juice |
| Natural-language processing | Intern | Sender Juice |
| Scale-invariant feature transform | Intern | Sender Juice |
| Vision processing unit | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| time domain | Intern | Sender Juice |
| frequency domain | Intern | Sender Juice |
| mathematical spaces | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| categorical data | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| "Deep learning" | Ekstern | noFollow |
| Bibcode | Intern | Sender Juice |
| 2015Natur.521..436L | Ekstern | noFollow |
| doi | Intern | Sender Juice |
| 10.1038/nature14539 | Ekstern | noFollow |
| ISSN | Intern | Sender Juice |
| 1476-4687 | Ekstern | noFollow |
| PMID | Intern | Sender Juice |
| 26017442 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Backpropagation Applied to Handwritten Zip Code Recognition" | Ekstern | noFollow |
| 10.1162/neco.1989.1.4.541 | Ekstern | noFollow |
| 0899-7667 | Ekstern | noFollow |
| ISBN | Intern | Sender Juice |
| Archived | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2020ITII...16.5769Z | Ekstern | noFollow |
| 10.1109/TII.2019.2956078 | Ekstern | noFollow |
| 1941-0050 | Ekstern | noFollow |
| S2CID | Intern | Sender Juice |
| 213010088 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Residue Number System-Based Solution for Reducing the Hardware Cost of a Convolutional Neural Network" | Ekstern | noFollow |
| 10.1016/j.neucom.2020.04.018 | Ekstern | noFollow |
| 219470398 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| OCLC | Intern | Sender Juice |
| 987790957 | Ekstern | noFollow |
| "An Artificial Neural Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1016/j.matcom.2020.04.031 | Ekstern | noFollow |
| 0378-4754 | Ekstern | noFollow |
| 218955622 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1145/1390156.1390177 | Ekstern | noFollow |
| 2617020 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Deep Learning Techniques to Improve Intraoperative Awareness Detection from Electroencephalographic Signals" | Ekstern | noFollow |
| 10.1109/EMBC44109.2020.9176228 | Ekstern | noFollow |
| 33017950 | Ekstern | noFollow |
| 221386616 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| 10.1109/CBI.2017.23 | Ekstern | noFollow |
| 4950757 | Ekstern | noFollow |
| "Shift-invariant pattern recognition neural network and its optical architecture" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "Parallel distributed processing model with local space-invariant interconnections and its optical architecture" | Ekstern | noFollow |
| 1990ApOpt..29.4790Z | Ekstern | noFollow |
| 10.1364/AO.29.004790 | Ekstern | noFollow |
| 20577468 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "Stride and Translation Invariance in CNNs" | Ekstern | noFollow |
| arXiv | Intern | Sender Juice |
| 2103.10097 | Ekstern | noFollow |
| 10.1007/978-3-030-66151-9_17 | Ekstern | noFollow |
| 232269854 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening" | Ekstern | noFollow |
| 2019PLoSO..1420113C | Ekstern | noFollow |
| 10.1371/journal.pone.0220113 | Ekstern | noFollow |
| PMC | Intern | Sender Juice |
| 31430292 | Ekstern | noFollow |
| "Neocognitron" | Ekstern | noFollow |
| 2007SchpJ...2.1717F | Ekstern | noFollow |
| "Receptive fields and functional architecture of monkey striate cortex" | Ekstern | noFollow |
| 10.1113/jphysiol.1968.sp008455 | Ekstern | noFollow |
| 0022-3751 | Ekstern | noFollow |
| 4966457 | Ekstern | noFollow |
| "Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" | Ekstern | noFollow |
| 10.1007/BF00344251 | Ekstern | noFollow |
| 7370364 | Ekstern | noFollow |
| 206775608 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "Subject independent facial expression recognition with robust face detection using a convolutional neural network" | Ekstern | noFollow |
| 2003NN.....16..555M | Ekstern | noFollow |
| 10.1016/S0893-6080(03)00115-1 | Ekstern | noFollow |
| 12850007 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| https://arxiv.org/abs/2108.11663v3 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Convolutional Neural Networks (LeNet) – DeepLearning 0.1 documentation" | Ekstern | noFollow |
| the original | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1610.02357 | Ekstern | noFollow |
| cs.CV | Ekstern | noFollow |
| "Flexible, High Performance Convolutional Neural Networks for Image Classification" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Krizhevsky | Intern | Sender Juice |
| "ImageNet Classification with Deep Convolutional Neural Networks" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| the original | Ekstern | noFollow |
| Institute of Electrical and Electronics Engineers | Intern | Sender Juice |
| 1202.2745 | Ekstern | noFollow |
| CiteSeerX | Intern | Sender Juice |
| 10.1.1.300.3283 | Ekstern | noFollow |
| 10.1109/CVPR.2012.6248110 | Ekstern | noFollow |
| 812295155 | Ekstern | noFollow |
| 2161592 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1511.07122 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1706.05587 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2108.07387 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "LeNet-5, convolutional neural networks" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Adaptive deconvolutional networks for mid and high level feature learning" | Ekstern | noFollow |
| 10.1109/iccv.2011.6126474 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1603.07285 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Deconvolution and Checkerboard Artifacts" | Ekstern | noFollow |
| 10.23915/distill.00003 | Ekstern | noFollow |
| 2476-0757 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Comparing Object Recognition in Humans and Deep Convolutional Neural Networks—An Eye Tracking Study" | Ekstern | noFollow |
| 10.3389/fnins.2021.750639 | Ekstern | noFollow |
| 1662-453X | Ekstern | noFollow |
| 34690686 | Ekstern | noFollow |
| "Receptive fields of single neurones in the cat's striate cortex" | Ekstern | noFollow |
| 10.1113/jphysiol.1959.sp006308 | Ekstern | noFollow |
| 14403679 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Archived | Ekstern | noFollow |
| 1969ITSSC...5..322F | Ekstern | noFollow |
| 10.1109/TSSC.1969.300225 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Schmidhuber, Juergen | Intern | Sender Juice |
| 2212.11279 | Ekstern | noFollow |
| cs.NE | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Deep learning" | Ekstern | noFollow |
| 3074096 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1710.05941 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Phoneme Recognition Using Time-Delay Neural Networks | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| Wayback Machine | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| "Convolutional networks for images, speech, and time series" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Connectionist Architectures for Multi-Speaker Phoneme Recognition | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Neural network recognizer for hand-written zip code digits | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| Backpropagation Applied to Handwritten Zip Code Recognition | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "Image processing of human corneal endothelium based on a learning network" | Ekstern | noFollow |
| 1991ApOpt..30.4211Z | Ekstern | noFollow |
| 10.1364/AO.30.004211 | Ekstern | noFollow |
| 20706526 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network" | Ekstern | noFollow |
| 1994MedPh..21..517Z | Ekstern | noFollow |
| 10.1118/1.597177 | Ekstern | noFollow |
| 8058017 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1109/ICCV.1993.378228 | Ekstern | noFollow |
| 8619176 | Ekstern | noFollow |
| "Deep Learning" | Ekstern | noFollow |
| 10.1.1.76.1541 | Ekstern | noFollow |
| 10.1162/neco.2006.18.7.1527 | Ekstern | noFollow |
| 16764513 | Ekstern | noFollow |
| 2309950 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| 10.1142/2808 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1998IEEEP..86.2278L | Ekstern | noFollow |
| 10.1109/5.726791 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Error Back Propagation with Minimum-Entropy Weights: A Technique for Better Generalization of 2-D Shift-Invariant NNs" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Applications of neural networks to medical signal processing | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Decomposition of surface EMG signals into single fiber action potentials by means of neural network | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Identification of firing patterns of neuronal signals | Ekstern | noFollow |
| https://ieeexplore.ieee.org/document/70115 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2004PatRe..37.1311O | Ekstern | noFollow |
| 10.1016/j.patcog.2004.01.013 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Using GPUs for Machine Learning Algorithms" | Ekstern | noFollow |
| 10.1109/ICDAR.2005.251 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "High Performance Convolutional Neural Networks for Document Processing" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| "Greedy Layer-Wise Training of Deep Networks" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Efficient Learning of Sparse Representations with an Energy-Based Model" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Large-scale deep unsupervised learning using graphics processors" | Ekstern | noFollow |
| 10.1145/1553374.1553486 | Ekstern | noFollow |
| 392458 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1003.0358 | Ekstern | noFollow |
| 2010NeCom..22.3207C | Ekstern | noFollow |
| 10.1162/NECO_a_00052 | Ekstern | noFollow |
| 20858131 | Ekstern | noFollow |
| 1918673 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "IJCNN 2011 Competition result table" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "History of computer vision contests won by deep CNNs on GPU" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "ImageNet classification with deep convolutional neural networks" | Ekstern | noFollow |
| 10.1145/3065386 | Ekstern | noFollow |
| 0001-0782 | Ekstern | noFollow |
| 195908774 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1702.07908 | Ekstern | noFollow |
| 10.1007/s11227-017-1994-x | Ekstern | noFollow |
| 14135321 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "The Potential of the Intel (R) Xeon Phi for Supervised Deep Learning" | Ekstern | noFollow |
| 10.1109/HPCC-CSS-ICESS.2015.45 | Ekstern | noFollow |
| 15411954 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "ImageNet Classification with Deep Convolutional Neural Networks" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| "Why do deep convolutional networks generalize so poorly to small image transformations?" | Ekstern | noFollow |
| 1533-7928 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2004.02806 | Ekstern | noFollow |
| 2022ITNNL..33.6999L | Ekstern | noFollow |
| 10.1109/TNNLS.2021.3084827 | Ekstern | noFollow |
| hdl | Intern | Sender Juice |
| 10072/405164 | Ekstern | noFollow |
| 34111009 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "CS231n Convolutional Neural Networks for Visual Recognition" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study" | Ekstern | noFollow |
| 10.1007/s00521-022-06953-8 | Ekstern | noFollow |
| 1433-3058 | Ekstern | noFollow |
| 35125669 | Ekstern | noFollow |
| "Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1412.6071 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1412.6806 | Ekstern | noFollow |
| cs.LG | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2019ITVT...68.3224M | Ekstern | noFollow |
| 10.1109/tvt.2019.2899972 | Ekstern | noFollow |
| 0018-9545 | Ekstern | noFollow |
| 86674074 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "A Comparison of Pooling Methods for Convolutional Neural Networks" | Ekstern | noFollow |
| 2022ApSci..12.8643Z | Ekstern | noFollow |
| 2076-3417 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2009.07485 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "A theory of steady-state activity in nerve-fiber networks: I. Definitions and preliminary lemmas" | Ekstern | noFollow |
| 10.1007/BF02478220 | Ekstern | noFollow |
| 0007-4985 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Appropriate number and allocation of ReLUs in convolutional neural networks" | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| the original | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Imagenet classification with deep convolutional neural networks" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2102.07757 | Ekstern | noFollow |
| 10.1109/ICASSP39728.2021.9414627 | Ekstern | noFollow |
| 231925012 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Tracking Translation Invariance in CNNS" | Ekstern | noFollow |
| 2104.05997 | Ekstern | noFollow |
| 10.1007/978-3-030-66151-9_18 | Ekstern | noFollow |
| 233219976 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1106340711 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Spatial Transformer Networks" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1106278545 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Barner, Kenneth E. | Intern | Sender Juice |
| "Inductive conformal predictor for convolutional neural networks: Applications to active learning for image classification" | Ekstern | noFollow |
| 2019PatRe..90..172M | Ekstern | noFollow |
| 10.1016/j.patcog.2019.01.035 | Ekstern | noFollow |
| 0031-3203 | Ekstern | noFollow |
| 127253432 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Deep Learning With Conformal Prediction for Hierarchical Analysis of Large-Scale Whole-Slide Tissue Images" | Ekstern | noFollow |
| 2021IJBHI..25..371W | Ekstern | noFollow |
| 2168-2208 | Ekstern | noFollow |
| 32750907 | Ekstern | noFollow |
| 219885788 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Dropout: A Simple Way to Prevent Neural Networks from overfitting" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Regularization of Neural Networks using DropConnect | ICML 2013 | JMLR W&CP" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1301.3557 | Ekstern | noFollow |
| "Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis – Microsoft Research" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1207.0580 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Dropout: A Simple Way to Prevent Neural Networks from Overfitting" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1016/s0364-0213(79)80008-7 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| https://www.coursera.org/learn/neural-networks | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "The inside story of how AI got good enough to dominate Silicon Valley" | Ekstern | noFollow |
| Quartz | Intern | Sender Juice |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1.1.92.5813 | Ekstern | noFollow |
| 10.1109/72.554195 | Ekstern | noFollow |
| 18255614 | Ekstern | noFollow |
| 2883848 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "A Convolutional Neural Network Approach for Objective Video Quality Assessment" | Ekstern | noFollow |
| 2006ITNN...17.1316L | Ekstern | noFollow |
| 10.1109/TNN.2006.879766 | Ekstern | noFollow |
| 17001990 | Ekstern | noFollow |
| 221185563 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "ImageNet Large Scale Visual Recognition Competition 2014 (ILSVRC2014)" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1409.4842 | Ekstern | noFollow |
| 10.1109/CVPR.2015.7298594 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Russakovsky, Olga | Intern | Sender Juice |
| Karpathy, Andrej | Intern | Sender Juice |
| 1409.0575 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "The Face Detection Algorithm Set To Revolutionize Image Search" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1.1.385.4740 | Ekstern | noFollow |
| 10.1007/978-3-642-25446-8_4 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2013ITPAM..35..221J | Ekstern | noFollow |
| 10.1.1.169.4046 | Ekstern | noFollow |
| 10.1109/TPAMI.2012.59 | Ekstern | noFollow |
| 0162-8828 | Ekstern | noFollow |
| 22392705 | Ekstern | noFollow |
| 1923924 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1801.10111 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Large-scale video classification with convolutional neural networks | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1406.2199 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Segment-Tube: Spatio-Temporal Action Localization in Untrimmed Videos with Per-Frame Segmentation" | Ekstern | noFollow |
| 2018Senso..18.1657W | Ekstern | noFollow |
| 10.3390/s18051657 | Ekstern | noFollow |
| 1424-8220 | Ekstern | noFollow |
| 5982167 | Ekstern | noFollow |
| 29789447 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1109/icip.2018.8451692 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1.1.294.5948 | Ekstern | noFollow |
| 10.1109/CVPR.2011.5995496 | Ekstern | noFollow |
| 6006618 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1404.7296 | Ekstern | noFollow |
| cs.CL | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Learning Semantic Representations Using Convolutional Neural Networks for Web Search – Microsoft Research" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1404.2188 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1408.5882 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| A unified architecture for natural language processing: Deep neural networks with multitask learning | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1103.0398 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1702.01923 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1803.01271 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1007/S00521-021-06190-5 | Ekstern | noFollow |
| 236307579 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2107.09355 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels" | Ekstern | noFollow |
| 10.7554/eLife.63377 | Ekstern | noFollow |
| 2050-084X | Ekstern | noFollow |
| 34473051 | Ekstern | noFollow |
| "Automated monitoring of honey bees with barcodes and artificial intelligence reveals two distinct social networks from a single affiliative behavior" | Ekstern | noFollow |
| 2023NatSR..13.1541G | Ekstern | noFollow |
| 10.1038/s41598-022-26825-4 | Ekstern | noFollow |
| 2045-2322 | Ekstern | noFollow |
| 36707534 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning" | Ekstern | noFollow |
| 2018PNAS..115E5716N | Ekstern | noFollow |
| 10.1073/pnas.1719367115 | Ekstern | noFollow |
| 0027-8424 | Ekstern | noFollow |
| 29871948 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| bioRxiv | Intern | Sender Juice |
| 10.1101/2025.04.08.647223 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1101/2025.05.30.657023 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "DeepLabCut: markerless pose estimation of user-defined body parts with deep learning" | Ekstern | noFollow |
| 10.1038/s41593-018-0209-y | Ekstern | noFollow |
| 1097-6256 | Ekstern | noFollow |
| 30127430 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning" | Ekstern | noFollow |
| 2019eLife...847994G | Ekstern | noFollow |
| 10.7554/eLife.47994 | Ekstern | noFollow |
| 31570119 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Publisher Correction: SLEAP: A deep learning system for multi-animal pose tracking" | Ekstern | noFollow |
| 10.1038/s41592-022-01495-2 | Ekstern | noFollow |
| 1548-7091 | Ekstern | noFollow |
| 35468969 | Ekstern | noFollow |
| "DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior Imaging Data" | Ekstern | noFollow |
| 10.3389/fnsys.2019.00020 | Ekstern | noFollow |
| 1662-5137 | Ekstern | noFollow |
| 31133826 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1906.03821 | Ekstern | noFollow |
| 10.1145/3292500.3330680 | Ekstern | noFollow |
| 182952311 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1510.02855 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1506.06579 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Toronto startup has a faster way to discover effective medicines" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Startup Harnesses Supercomputers to Seek Cures" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1999ITNN...10.1382C | Ekstern | noFollow |
| 10.1109/72.809083 | Ekstern | noFollow |
| 18252639 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2001ITEC....5..422C | Ekstern | noFollow |
| 10.1109/4235.942536 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| 1412.3409 | Ekstern | noFollow |
| cs.AI | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1412.6564 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "AlphaGo – Google DeepMind" | Ekstern | noFollow |
| the original | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| 1703.04691 | Ekstern | noFollow |
| stat.ML | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1508.00317 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1906.04397 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.21629/JSEE.2017.01.18 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1908.07978 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| Hubert Mara | Intern | Sender Juice |
| 10.11588/data/IE8CCN | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1109/ICDAR.2019.00032 | Ekstern | noFollow |
| 211026941 | Ekstern | noFollow |
| citation | Intern | Sender Juice |
| link | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| YouTube | Intern | Sender Juice |
| ^ | Intern | Sender Juice |
| "CNN based common approach to handwritten character recognition of multiple scripts" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "NIPS 2017" | Ekstern | noFollow |
| the original | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1803.07179 | Ekstern | noFollow |
| 10.1007/978-3-319-92007-8_9 | Ekstern | noFollow |
| 1868-4238 | Ekstern | noFollow |
| 4058889 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network" | Ekstern | noFollow |
| 2018Senso..18.1979W | Ekstern | noFollow |
| 10.3390/s18071979 | Ekstern | noFollow |
| 6069475 | Ekstern | noFollow |
| 29933555 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 1508.04186v2 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2015Natur.518..529M | Ekstern | noFollow |
| 10.1038/nature14236 | Ekstern | noFollow |
| 25719670 | Ekstern | noFollow |
| 205242740 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 2000ITSMB..30..403S | Ekstern | noFollow |
| 10.1.1.11.226 | Ekstern | noFollow |
| 10.1109/3477.846230 | Ekstern | noFollow |
| 1083-4419 | Ekstern | noFollow |
| 18252373 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Convolutional Deep Belief Networks on CIFAR-10" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1.1.149.6800 | Ekstern | noFollow |
| 10.1145/1553374.1553453 | Ekstern | noFollow |
| 12008458 | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| 10.1007/b11963 | Ekstern | noFollow |
| 1304548 | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| ^ | Intern | Sender Juice |
| "Introduction to Machine Learning, Neural Networks, and Deep Learning" | Ekstern | noFollow |
| Archived | Ekstern | noFollow |
| CS231n: Convolutional Neural Networks for Visual Recognition | Ekstern | noFollow |
| Stanford | Intern | Sender Juice |
| vdumoulin/conv_arithmetic: A technical report on convolution arithmetic in the context of deep learning | Ekstern | noFollow |
| Artificial intelligence | Intern | Sender Juice |
| History | Intern | Sender Juice |
| timeline | Intern | Sender Juice |
| Companies | Intern | Sender Juice |
| Projects | Intern | Sender Juice |
| Parameter | Intern | Sender Juice |
| Double descent | Intern | Sender Juice |
| Gradient descent | Intern | Sender Juice |
| SGD | Intern | Sender Juice |
| Quasi-Newton method | Intern | Sender Juice |
| Conjugate gradient method | Intern | Sender Juice |
| Normalization | Intern | Sender Juice |
| Batchnorm | Intern | Sender Juice |
| Gating | Intern | Sender Juice |
| Weight initialization | Intern | Sender Juice |
| Datasets | Intern | Sender Juice |
| Prompt engineering | Intern | Sender Juice |
| Imitation | Intern | Sender Juice |
| Diffusion | Intern | Sender Juice |
| Latent diffusion model | Intern | Sender Juice |
| Autoregression | Intern | Sender Juice |
| Adversary | Intern | Sender Juice |
| RAG | Intern | Sender Juice |
| Uncanny valley | Intern | Sender Juice |
| Reflection | Intern | Sender Juice |
| Recursive self-improvement | Intern | Sender Juice |
| Hallucination | Intern | Sender Juice |
| Word embedding | Intern | Sender Juice |
| Vibe coding | Intern | Sender Juice |
| Safety | Intern | Sender Juice |
| Alignment | Intern | Sender Juice |
| Applications | Intern | Sender Juice |
| In-context learning | Intern | Sender Juice |
| Language model | Intern | Sender Juice |
| Large | Intern | Sender Juice |
| NMT | Intern | Sender Juice |
| Reasoning | Intern | Sender Juice |
| Model Context Protocol | Intern | Sender Juice |
| Intelligent agent | Intern | Sender Juice |
| Artificial human companion | Intern | Sender Juice |
| Humanity's Last Exam | Intern | Sender Juice |
| Lethal autonomous weapons (LAWs) | Intern | Sender Juice |
| Generative artificial intelligence (GenAI) | Intern | Sender Juice |
| Artificial general intelligence (AGI) | Intern | Sender Juice |
| Artificial superintelligence (ASI) | Intern | Sender Juice |
| WaveNet | Intern | Sender Juice |
| Human image synthesis | Intern | Sender Juice |
| HWR | Intern | Sender Juice |
| OCR | Intern | Sender Juice |
| Speech synthesis | Intern | Sender Juice |
| 15.ai | Intern | Sender Juice |
| ElevenLabs | Intern | Sender Juice |
| Speech recognition | Intern | Sender Juice |
| Whisper | Intern | Sender Juice |
| AlphaFold | Intern | Sender Juice |
| Text-to-image models | Intern | Sender Juice |
| Aurora | Intern | Sender Juice |
| DALL-E | Intern | Sender Juice |
| Firefly | Intern | Sender Juice |
| Flux | Intern | Sender Juice |
| GPT Image | Intern | Sender Juice |
| Ideogram | Intern | Sender Juice |
| Imagen | Intern | Sender Juice |
| Midjourney | Intern | Sender Juice |
| Recraft | Intern | Sender Juice |
| Stable Diffusion | Intern | Sender Juice |
| Dream Machine | Intern | Sender Juice |
| Runway Gen | Intern | Sender Juice |
| Hailuo AI | Intern | Sender Juice |
| Kling | Intern | Sender Juice |
| Sora | Intern | Sender Juice |
| Veo | Intern | Sender Juice |
| Music generation | Intern | Sender Juice |
| Riffusion | Intern | Sender Juice |
| Suno AI | Intern | Sender Juice |
| Udio | Intern | Sender Juice |
| Word2vec | Intern | Sender Juice |
| Seq2seq | Intern | Sender Juice |
| GloVe | Intern | Sender Juice |
| BERT | Intern | Sender Juice |
| T5 | Intern | Sender Juice |
| Llama | Intern | Sender Juice |
| Chinchilla AI | Intern | Sender Juice |
| PaLM | Intern | Sender Juice |
| GPT | Intern | Sender Juice |
| 1 | Intern | Sender Juice |
| 2 | Intern | Sender Juice |
| 3 | Intern | Sender Juice |
| J | Intern | Sender Juice |
| ChatGPT | Intern | Sender Juice |
| 4 | Intern | Sender Juice |
| 4o | Intern | Sender Juice |
| o1 | Intern | Sender Juice |
| o3 | Intern | Sender Juice |
| 4.5 | Intern | Sender Juice |
| 4.1 | Intern | Sender Juice |
| o4-mini | Intern | Sender Juice |
| 5 | Intern | Sender Juice |
| 5.1 | Intern | Sender Juice |
| 5.2 | Intern | Sender Juice |
| Claude | Intern | Sender Juice |
| Gemini | Intern | Sender Juice |
| Gemini (language model) | Intern | Sender Juice |
| Gemma | Intern | Sender Juice |
| Grok | Intern | Sender Juice |
| LaMDA | Intern | Sender Juice |
| BLOOM | Intern | Sender Juice |
| DBRX | Intern | Sender Juice |
| Project Debater | Intern | Sender Juice |
| IBM Watson | Intern | Sender Juice |
| IBM Watsonx | Intern | Sender Juice |
| Granite | Intern | Sender Juice |
| PanGu-Σ | Intern | Sender Juice |
| DeepSeek | Intern | Sender Juice |
| Qwen | Intern | Sender Juice |
| AlphaZero | Intern | Sender Juice |
| OpenAI Five | Intern | Sender Juice |
| MuZero | Intern | Sender Juice |
| Action selection | Intern | Sender Juice |
| AutoGPT | Intern | Sender Juice |
| Robot control | Intern | Sender Juice |
| Alan Turing | Intern | Sender Juice |
| Warren Sturgis McCulloch | Intern | Sender Juice |
| Walter Pitts | Intern | Sender Juice |
| John von Neumann | Intern | Sender Juice |
| Christopher D. Manning | Intern | Sender Juice |
| Claude Shannon | Intern | Sender Juice |
| Shun'ichi Amari | Intern | Sender Juice |
| Takeo Kanade | Intern | Sender Juice |
| Marvin Minsky | Intern | Sender Juice |
| John McCarthy | Intern | Sender Juice |
| Nathaniel Rochester | Intern | Sender Juice |
| Allen Newell | Intern | Sender Juice |
| Cliff Shaw | Intern | Sender Juice |
| Herbert A. Simon | Intern | Sender Juice |
| Oliver Selfridge | Intern | Sender Juice |
| Frank Rosenblatt | Intern | Sender Juice |
| Bernard Widrow | Intern | Sender Juice |
| Joseph Weizenbaum | Intern | Sender Juice |
| Seymour Papert | Intern | Sender Juice |
| Seppo Linnainmaa | Intern | Sender Juice |
| Paul Werbos | Intern | Sender Juice |
| Geoffrey Hinton | Intern | Sender Juice |
| John Hopfield | Intern | Sender Juice |
| Jürgen Schmidhuber | Intern | Sender Juice |
| Lotfi A. Zadeh | Intern | Sender Juice |
| Stephen Grossberg | Intern | Sender Juice |
| Alex Graves | Intern | Sender Juice |
| James Goodnight | Intern | Sender Juice |
| Andrew Ng | Intern | Sender Juice |
| Fei-Fei Li | Intern | Sender Juice |
| Ilya Sutskever | Intern | Sender Juice |
| Oriol Vinyals | Intern | Sender Juice |
| Quoc V. Le | Intern | Sender Juice |
| Ian Goodfellow | Intern | Sender Juice |
| Demis Hassabis | Intern | Sender Juice |
| David Silver | Intern | Sender Juice |
| Ashish Vaswani | Intern | Sender Juice |
| Noam Shazeer | Intern | Sender Juice |
| Aidan Gomez | Intern | Sender Juice |
| John Schulman | Intern | Sender Juice |
| Mustafa Suleyman | Intern | Sender Juice |
| Jan Leike | Intern | Sender Juice |
| Daniel Kokotajlo | Intern | Sender Juice |
| François Chollet | Intern | Sender Juice |
| Neural Turing machine | Intern | Sender Juice |
| Differentiable neural computer | Intern | Sender Juice |
| Residual neural network (RNN) | Intern | Sender Juice |
| Highway network | Intern | Sender Juice |
| Variational autoencoder (VAE) | Intern | Sender Juice |
| Graph neural network (GNN) | Intern | Sender Juice |
| Regulation of artificial intelligence | Intern | Sender Juice |
| Ethics of artificial intelligence | Intern | Sender Juice |
| Precautionary principle | Intern | Sender Juice |
| Artificial Intelligence Act (AI Act) | Intern | Sender Juice |
| AI bubble | Intern | Sender Juice |
| AI literacy | Intern | Sender Juice |
| AI winter | Intern | Sender Juice |
| In education | Intern | Sender Juice |
| In architecture | Intern | Sender Juice |
| In visual art | Intern | Sender Juice |
| Category | Intern | Sender Juice |
| Authority control databases | Intern | Sender Juice |
| Latvia | Ekstern | noFollow |
| https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=1335778735 | Ekstern | Sender Juice |
| Categories | Intern | Sender Juice |
| Neural network architectures | Intern | Sender Juice |
| Computer vision | Intern | Sender Juice |
| Computational neuroscience | Intern | Sender Juice |
| Webarchive template wayback links | Intern | Sender Juice |
| All articles with dead external links | Intern | Sender Juice |
| Articles with dead external links from July 2022 | Intern | Sender Juice |
| CS1 German-language sources (de) | Intern | Sender Juice |
| Articles with short description | Intern | Sender Juice |
| Short description is different from Wikidata | Intern | Sender Juice |
| All articles with unsourced statements | Intern | Sender Juice |
| Articles with unsourced statements from October 2017 | Intern | Sender Juice |
| All articles needing examples | Intern | Sender Juice |
| Articles needing examples from October 2017 | Intern | Sender Juice |
| Articles with unsourced statements from March 2024 | Intern | Sender Juice |
| All articles with specifically marked weasel-worded phrases | Intern | Sender Juice |
| Articles with specifically marked weasel-worded phrases from December 2018 | Intern | Sender Juice |
| Articles needing additional references from June 2017 | Intern | Sender Juice |
| All articles needing additional references | Intern | Sender Juice |
| Wikipedia articles needing clarification from December 2018 | Intern | Sender Juice |
| Articles with unsourced statements from June 2019 | Intern | Sender Juice |
| Creative Commons Attribution-ShareAlike 4.0 License | Intern | Sender Juice |
| Terms of Use | Ekstern | Sender Juice |
| Privacy Policy | Ekstern | Sender Juice |
| Wikimedia Foundation, Inc. | Ekstern | noFollow |
| About Wikipedia | Intern | Sender Juice |
| Disclaimers | Intern | Sender Juice |
| Contact Wikipedia | Intern | Sender Juice |
| Legal & safety contacts | Ekstern | Sender Juice |
| Code of Conduct | Ekstern | Sender Juice |
| Developers | Ekstern | Sender Juice |
| Statistics | Ekstern | Sender Juice |
| Cookie statement | Ekstern | Sender Juice |
| Mobile view | Intern | Sender Juice |
Nøgleords cloud
Nøgleords balance
| Nøgleord | Indhold | Titel | Nøgleord | Beskrivelse | Overskrifter |
|---|
Link
Domæne : cnn.ai
Længde : 6
FavIkon
Godt, din side har et FavIcon!
Printervenlighed
Vi kunne ikke finde en printer venlig CSS skabelon.
Sprog
Godt, dit tildelte sprog er en.
Dublin Core
Denne side benytter IKKE Dublin Core principperne.
Dokumenttype
HTML 5
Kryptering
Perfekt. Dit Charset er tildelt UTF-8.
W3C Validering
Fejl : 0
Advarsler : 0
Email Privatliv
Godt! Ingen email adresser er blevet fundet i rå tekst!
Udgået HTML
| Udgåede tags | Forekomster |
|---|---|
| <u> | 2 |
Fejl! Vi har fundet udgåede HTML tags i din kildekode. Udgåede tags bliver ikke længere understøttet af alle browsere.
Hastigheds Tips
![]() |
Advarsel! Prøv at undgå at benytte nestede tabeller i HTML. |
![]() |
Advarsel! Din webside benytter inline CSS kode! |
![]() |
Godt, din website har få antal CSS filer |
![]() |
Perfekt, din website har få JavaScript filer. |
![]() |
Ærgerligt, din hjemmeside ikke udnytte gzip. |
Mobil Optimering
![]() |
Apple Ikon |
![]() |
Meta Viewport Tag |
![]() |
Flash indhold |
XML Sitemap
Mangler
Dit websted ikke har en XML sitemap - det kan være problematisk.
Et sitemap lister URL'er, der er tilgængelige for gennemgang og kan indeholde yderligere oplysninger som dit websted seneste opdateringer, hyppigheden af ændringer, og betydningen af de webadresser. Dette gør det muligt søgemaskiner til at gennemgå webstedet mere intelligent.
Robots.txt
https://cnn.ai/robots.txt
Stor, din hjemmeside har en robots.txt-fil.
Analytics
Mangler
Vi har ikke registrerer en analyseværktøj installeret på denne hjemmeside.
Web analytics kan du måle besøgendes aktivitet på dit websted. Du bør have mindst én analyseværktøj installeret, men det kan også være godt at installere et sekund for at krydstjekke data.
Free SEO Testing Tool er et gratis SEO redskab der hjælper med din hjemmeside